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Roughening-induced deconstruction in„100… facets of CsCl-type crystals

Douglas Davidson and Marcel den Nijs
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 13 August 1996!

The staggered six-vertex model describes the competition between surface roughening and reconstruction in
~100! facets of CsCl-type crystals. Its phase diagram does not have the expected generic structure, due to the
presence of a fully packed loop-gas line. We prove that the reconstruction and roughening transitions, cannot
cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical
finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong-coupling
scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface rough-
ness much larger than the conventional universal value. It seems that additional fluctuations become critical
simultaneously.@S1063-651X~97!13001-X#

PACS number~s!: 64.60.Fr, 68.35.Rh, 82.65.Dp, 68.35.Bs
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I. INTRODUCTION

In a recent paper, Mazzeo, Carlon, and van Beijeren@1#
discussed the competition between surface roughening
reconstruction inc~232!-reconstructed~100! facets of CsCl-
type crystals. Their numerical finite size scaling~FSS! results
for the staggered six-vertex model are quite surprising. T
phase diagram lacks a so-called reconstructed rough~RR!
phase, although such a phase is a generic feature in sur
where step excitations do not destroy the reconstruction
der. The phase diagram should have the same structure a
missing row~MR!-reconstructed simple-cubic~sc! ~100! fac-
ets@2–4#. The roughening and reconstruction lines should
able to cross. Instead they only seem to approach each o
exponentially closely. In this paper, we explain why this ha
pens. The absence of a RR phase in the staggered six-v
model is accidental, the result of a special symmetry of
interactions in this particular model, the presence of a fu
packed loop-gas line.

In Sec. II, we review the rich history of the stagger
six-vertex model. In Sec. III, we describe the topologic
properties of step and wall excitations inc~232!-
reconstructed CsCl~100!. We set up the cell-spin model de
scription for this type of competition between surface roug
ening and reconstruction. Topological consideratio
determine whether the roughening and reconstruction l
can cross or only merge~whether an RR phase is possible
not!. For example, in MR-reconstructed sc~110! facets they
can cross, but in MR-reconstructed fcc~110! facets they can
only merge@2–4#. We show that inc~232! reconstructed
CsCl~100! they are allowed to cross. The competition in th
surface is in the same universality class as in M
reconstructed sc~110! facets. However, the RR phase in th
staggered six-vertex model is at best narrow. We estimate
energies of two topologically distinct types of steps, and fi
that they cost almost the same energy in the region of
phase diagram where the surface roughens.

Carlon and co-workers@5,6# pointed out the existence of
special line in the phase diagram. It runs in between the Is
and roughening lines. Along this line the partition function
equivalent to the four-state Potts model on a square la
with negative Boltzmann weights. They expected this line
551063-651X/97/55~2!/1331~11!/$10.00
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be similar to a so-called disorder line, and this explains th
numerical results~the noncrossing of the Ising and roughe
ing lines!. In Sec. IV we show that this line is equivalent
a fully packed loop gas on a square lattice.

In Sec. V, we prove rigorously that the reconstruction li
cannot cross the loop-gas line. Furthermore, we show
the roughening line also cannot cross the loop-gas line if
roughening and reconstruction degrees of freedom cou
weakly. The weak-coupling hypothesis assumes that the
construction and roughening degrees of freedom inte
weakly, such that their scaling properties are a superposit
Earlier studies of models for MR-reconstructed sc~110! and
fcc~110! facets strongly support the weak-coupling hypo
esis @2–4#. It should hold for CsCl~100! as well, since the
cell-spin model in Sec. III is the same.

This seems to resolve the issue. The phase diagram fo
by Mazzeo, Carlon, and van Beijeren@1# is the only one
allowed within weak-coupling theory, but it is an acciden
The special symmetries of the loop-gas line cause this
ticular model to follow a special cut through the gene
phase diagram. The roughening and Ising lines appro
each other only pathologically closely, because entro
cannot be lowered far enough to reach the crossing point
the RR phase. In general, the interactions in CsCl-type
faces will be more generic, and allow the RR phase. Ho
ever, this is not the end of the story.

In Sec. VI we present our numerical FSS results. Mazz
Carlon, and van Beijeren@1# performed their study before
they discovered the loop-gas line. Knowledge of the ex
location of the line where the roughening and reconstruct
lines must merge or cross~if they do so! enhances the accu
racy of the analysis considerably. We find that the scal
behavior along the loop-gas line does not obey the we
coupling hypothesis.

The question of weak versus strong-coupling-type com
tition between reconstruction and roughening degrees
freedom is an important unresolved issue in the theory
two-dimensional~2D! critical phenomena. It appears no
only in surface physics, but also, e.g., in coupled Joseph
junction arrays in a magnetic field~the fully frustratedXY
model! @7–13#. The phase diagrams of these problems sh
as a basic feature a conventional order-disorder transi
1331 © 1997 The American Physical Society
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1332 55DOUGLAS DAVIDSON AND MARCEL den NIJS
line ~such as an Ising or three-state Potts transition!, ap-
proaching a critical~rough! phase. A critical line described
by conformal field theory~CFT! with central chargec,1
competes with a critical phase with central chargec51. The
fundamental question is whether interesting CFT’s can re
from this competition. Thec theorem@14,15# implies that
such CFT’s must have a central charge lower than 1.
ones we know are rather simple direct products ofc51 and
c,1 theories, some with extra symmetries, such as su
symmetry, between the two types of degrees of freed
This supports the weak-coupling hypothesis. However,
more interesting types ofc.1 CFT’s really not exist? Can
the coupling between two types ofc<1 degrees of freedom
ever lead to more intricatec.1 scaling behavior? This ques
tion is the driving force behind a large number of numeri
studies, in particular within the context of the fully frustrate
XY model and the competition between surface roughen
and reconstruction@1–13#. But this has proved to be ex
tremely difficult to answer.

Three types of answers are possible and each has
peared in the literature. The first one is that thec,1 line
cannot reach thec51 phase. The line can only approach th
phase pathologically close. This suggests the existence
no-go theorem of some sort. Our exact results in Sec
amount to such a no-go theorem, but only for the stagge
six-vertex model, and only within the weak-coupling hypot
esis.

The second possibility is the weak-coupling scenario. T
reconstruction and roughening lines cross or merge, but
two types of critical fluctuations interact weakly and beha
like a direct product. The central charge is equal to the s
(c51.5 in our case, sincec50.5 at Ising critical points, and
c51 inside the rough phase!. This type of behavior is almos
indistinguishable from the effective scaling when the tw
lines approach each other only pathologically close~see Sec.
V!. Typically, the numerical data can be interpreted b
ways@7–13#. Fortunately, our exact results in Sec. V disti
guish between the two in the six-vertex model.

The third possibility is that the lines cross or merge with
scaling behavior different from a simple superposition. T
central charge is not equal to the sum. Convincing evide
for strong coupling would revolutionize CFT atc.1. Nu-
merical evidence of strong coupling has been presente
models related to the fully frustratedXY model, but remains
ambiguous@7–13#. We find strong numerical evidence~in
Sec. VI! that the roughening and reconstruction lines in
staggered six-vertex model merge along the loop-gas l
with strong-coupling scaling properties.

In Sec. VII, we summarize our results, discuss rela
recent results for fully packed loop gases on different
tices, and give a possible explanation for the strong-coup
behavior.

II. STAGGERED SIX-VERTEX MODEL

The ~100! facets of CsCl-type crystals have a bod
centered-type stacking with two kinds of atoms, typesA and
B. The appropriate solid-on-solid description is a stagge
body-centered solid-on-solid~BCSOS! model, equivalent to
a staggered six-vertex model. Stacks ofA occupy theA
sublattice, where the column heights are odd numb
lt
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hA561, 63, 65, . . . . TheB-type atoms occupy theB su-
blattice where the column heights are even,hB50, 62, 64,
. . . . Nearest-neighbor stacks differ in height by only on
unit, dh561. The surface energy is given by

H52
1

4(x,y $EA~h~x,y!2h~x11,y61!!
2

1EB~h~x11,y!2h~x,y61!!
2%. ~1!

The summation runs over only theA-type sublattice sites~all
even values ofx1y!.

This model has a rich history. Figure 1 shows its pha
diagram. It is exactly soluble by the Bethe ansatz along t
line EA5EB , where it reduces to the so-calledF model@16–
18#. We denote the flat phase asF(n1 1

2), because the aver-
age surface height is a half-integer. A more detailed notati
is in terms of the heights at four sublattice
(hA,1 ,hA,2 ;hB,1 ,hB,2)5(n11,n11;n,n). The 1 and 2
indices represent the two~checkerboard type! sublattices
within eachA andB sublattice. AlongEA5EB , elementary
step excitations induce a height change61. They roughen
the surface atzA5zB5 1

2, with zA5exp(EA /kBT) and zB
5exp(EB /kBT) @16–18#.

EA andEB are not equal in CsCl-type surfaces, since th
A- andB-type atoms interact differently. Knops@19# realized
that this changes the disordering of theF(n1 1

2) phase. He
used the equivalence of Eq.~1! to the Ashkin-Teller model.
Rephrased from the more recent perspective of prerough
ing ~PR! transitions and disordered flat~DOF! phases, his
results are as follows:F(n1 1

2) contains two types of steps,
SA andSB . In surfaces with a height 2m1 1

2, up-steps are of
typeSB and down-steps are of typeSA ~they reverse roles in
surfaces with a height 2m2 1

2). 2EA is the energy ofSA

FIG. 1. Phase diagram of the staggered six-vertex model defin
in Eq. ~1!. At point S the Ising reconstruction and KT roughening
lines merge into a single transition along the loop-gas line~dashed!.
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55 1333ROUGHENING-INDUCED DECONSTRUCTION IN~100! . . .
steps~per unit length!, and2EB of SB steps. The free energ
of SA steps vanishes before that ofSB steps on theEA.EB
side of the phase diagram. This does not cause roughe
yet, since building up a slope in the surface requiresSB steps
as well. Only the spontaneous symmetry breaking betw
pairs of surface heights, 2m1 1

2 and 2m2 1
2, is lifted. The

result is a DOF phase with lots ofSA-type steps in the sur
face, but still flat at large length scales. In Fig. 1, we den
this as the DOF (2m) phase, because the average surf
height is an even integer, 2m.

This is an example of PR transition, but in a differe
universality class than the conventional one@2,4#. In both
cases the average surface height changes spontaneous
half a unit. At conventional PR transitions the number
degenerate equivalent surface heights does not change.
all shift by one-half unit, and the distance between th
remains the same. In this example, however, the dista
between degenerate equivalent surface heights incre
from 1 to 2. The elementary step height is equal todh561
in theF(n1 1

2) phase, but equal todh562 in the DOF (2m)
phase. Therefore, this is a simple Ising line instead of a
with continuously varying critical exponents.

This doubling in the basic step height not only chang
the nature of the transition into the DOF phase; it also del
the roughening transition considerably, even for small
ergy differencesEA2EB @19#. The surface roughness is cha
acterized by the amplitude of the height-height correlatio
as

^~hr1r0
2hr0!

2&.
1

pKG
ln~ ur u!, ~2!

where KG
21 is the surface roughness parameter. Rou

phases become unstable with respect to discreteness o
surface height atKG5p/8 for a step sizedh562 compared
to KG5p/2 for a step sizedh561, in other words, not until
the surface is four times as rough. In this particular mod
these roughening lines lie at the side of the phase diag
where both step energies are negative~both EA andEB are
positive!. Point F in Fig. 1 is located atzA5zB5A(11 1

2

A2)51.306 56. The local structure of the phase diagr
around pointF is known as a ‘‘critical fan’’@20#. Notice that
unreconstructed surfaces described by Eq.~1! never roughen
~except alongEA5EB!. They follow specific paths through
Fig. 1, which are approximately lines at constantEA/EB with
bothEA andEB negative. Such lines do not enter the critic
fan. The absence of a roughening transition is not a gen
feature, however. Experimental unreconstructed CsCl~100!-
type surfaces will include step-step interactions and ot
aspects that are able to move pointF towardzA5zB51 and
beyond.

In the upper left corner of Fig. 1 the surface reconstru
All B-type columns are at the same height, 2m, and
the A-type columns alternate between 2m61; e.g.,
(hA1 ,hA2 , hB1 ,hB2)5(2m11,2m21,2m,2m). We call
this theRA(2m,u)-reconstructed phase. The average surf
height is an even integer. The Ising-type order param
u50,p denotes which of the twoA-type sublattices is on top
The average surface height is the same as in the DOF (m)
phase. The difference is the appearance of antiferromagn
type ordering of theA-sublattice heights. The competitio
ing
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between deconstruction of this type of order and surf
roughening is the topic of this paper, in particular the exi
ence of pointS in Fig. 1, and the scaling properties of th
critical line beyond this point.

Figure 1 has mirror symmetry with respect toEA5EB .
TheA- andB-type particles switch roles. In the lower righ
corner of Fig. 1 the surface height is an odd integer. T
surface reconstructs into anRB(2m11,u) phase, and the
DOF phase is of type DOF (2m11).

III. STEPS AND WALLS IN THE c„232… PHASE

Reconstructed surfaces can disorder in several ways:
can lose their reconstruction first and then roughen; they
roughen first and only later deconstruct; or roughening
induce a simultaneous deconstruction transition. The la
happens when the topology of the surface implies that s
destroy the reconstruction order parameter. Figure 2 sh
the three topologically distinct line excitations in th
RA(2m,u) phase: a~12,p! step, a~0,p! wall, and a~22,0!
step. Wall excitations do not change the surface height. T
cause a switch in which of the twoA-type sublattices is on
top. Steps of type~62,0! change the surface height by62,
but do not change the Ising order parameteru; the same
A-type sublattice stays on top. Steps of type~62,p! change
the surface height by62, and switch which of the two
A-type sublattices is on top.

It is an illusion to think that~62,p! steps destroy the
reconstruction order. They preserve a different definition
the reconstruction order. This can be expressed in term
which sublattice is on top,u50,p, or in terms of parity spins,
SA5exp@ 12iphA]561. TheSA spins are ordered antiferro
magnetically in theRA(2m,u) phase. These two definition
of the Ising order are equivalent to flat surfaces but inequi
lent in rough surfaces. The~62,p! steps destroy the subla
tice order but preserve the parity order. The~62,0! steps
destroy the parity order but preserve the sublattice ord
Two types of RR phases are possible: the surface is rou
but such that theSA order parameter remains nonzero; or t
surface is rough, but such that theu order parameter persists
In diffraction experiments, the roughening transition can

FIG. 2. Excitations inside theRA(2m,u)-reconstructed phase:
~2,0! step,~0,p! wall, and~2,p! step running in the diagonal direc
tion. The shaded areas represent theB sublattice. The wiggly
~circled! lines representsEA- (EB)-type broken bonds.
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1334 55DOUGLAS DAVIDSON AND MARCEL den NIJS
easily mistaken for a simultaneous deconstruction transit
The ‘‘reconstruction diffraction peak’’ couples only to on
of the two order parameters~typically the parity one!, and
that order might not be the type that persists in the RR ph

Along paths where either type of step costs less ene
than a wall, the surface roughens first, into the appropr
RR phase, followed by an Ising-type deconstruction tran
tion inside the rough phase. Along paths where walls c
less than steps, the surface deconstructs into the DOF (m)
phase, and only later roughens.

Figure 3 illustrates these different typical behaviors. It i
schematic phase diagram for the following model@4#. Each
site of a square lattice contains an Ising spin,sr561, and a
height variable,hr50,62,64, . . . . They interact as

H52 (
^r ,r8&

Kss rs r8
1
1

2
~Kts rs r8

1Kh!@22~hr2hr8
!2#,

~3!

with r and r 8 nearest-neighbor sites. Only steps of heig
dh562 are allowed. sr5cos~pur!561 represents the
sublattice-type reconstruction order parameter, andhr the lo-
cal surface height. Walls costE~0,p!52~Ks1Kt!. Steps cost
E~2,0!52~Kt1Kh! and E~2,p!52~Ks1Kh!, respectively.
This is a renormalized effective model, on a larger len
scale than the staggered six-vertex model. It must be in
same universality class in the local neighborhood about
reconstructed phase, assuming we correctly identify all c
cal fluctuations of the six-vertex model in this part of t
phase diagram. Figure 1 should follow a specific 2D
through Fig. 3.

The mirror symmetry in Fig. 3 with respect toD5E~2,0!
2E~2,p! reflects the equivalence between the two definitio
of the reconstruction order. Consider the following constr
tion of a typical configuration. Define a second type of Isi
spin Sr5 exp(12iphr)561, and draws- andS-type Bloch
walls along the bonds of the lattice. Thes-type Bloch walls

FIG. 3. Generic phase diagram for the competition between
face roughening and the Ising-type reconstruction@see Eq.~3!#,
with D the energy difference between~2,0!- and ~2,p!-type steps,
andR the difference between the energy of a~0,p! wall and the
average step energy.
n.
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represent wall excitations in the surface, and theS-type
Bloch walls represent~2,0!-type steps. Place one arrow alon
eachS-type Bloch wall to denote the direction in which th
height changes across the steps~up from left to right while
looking in the direction along the arrow!. Sections along the
lattice whereS- ands-type Bloch walls coincide represen
~2,p!-type steps. The following change of variables gen
ates the mirror symmetry in Fig. 3. Define Ising spinst5sS
to represent the~2,p!-type steps and then eliminate thes
spins,~s,S!→~t,S!. This leads us back to Eq.~3!, but with
thet spins replacing thes spins, and withKa↔Kt . The two
RR phases switch places.

This transformation is reminiscent of supersymmetry b
tween the fermion~Ising! and boson~height! degrees of free-
dom. It is weaker than supersymmetry, only aZ2-type invari-
ance @4#. At the same time it is more general, an exa
symmetry of the lattice model not restricted toTc . The entire
D50 space is invariant, instead of only the critical lin
A2B. We expect that critical fluctuations generate full s
persymmetry at large length scales. The roughening-indu
simultaneous deconstruction transition alongA-B will then
be described by a supersymmetric CFT, probably one w
central chargec51.5 where the roughening and reconstru
tion are weakly coupled.

Experimental systems and microscopic models foll
specific cuts through Fig. 3. For example, the antiferrom
netic restricted solid-on-solid model describes checkerbo
type-reconstructed sc~100! facets@2,4#. Indeed, its phase dia
gram represents a generic slice out of Fig. 3 with a D
phase and an RR phase; and the Ising and roughening
grees couple weakly with central chargec51.5 @2,4#. One of
the exactly soluble generalized RSOS models@21# moves
along the Ising surface in Fig. 3 as well, and confirms we
coupling behavior@22#. A third example is the chiral four-
state clock-step model@4# which describes MR-reconstructe
fcc~110! facets. Topology requires the two types of steps
those surfaces to have identical energies. The nonchiral l
of the four-state clock-step model coincides with theD50
plane of Eq.~3!. Numerical evidence supports the expec
tion that alongA-B the Ising and roughening degrees
freedom couple weakly withc51.5.

The phase diagram of the staggered six-vertex mo
should be a generic cut through Fig. 3, similar to the RS
model. There is no intrinsic topological requirement forD to
be zero. However, Mazzeo, Carlon, and van Beijeren did
find an RR phase.

One possible explanation is thatD is small or vanishes
‘‘accidentally’’ in the six-vertex model. The wall and step
in Fig. 2 run diagonally across the surface. In that directi
the two types of steps cost the same amount of energy
unit length,E(2,0)5E(2,p)5 1

2A2(2EA2EB). A wall cost
E(0,p)5 1

2A2EA. This suggests thatD is equal to zero. How-
ever, D is quite large for walls and steps running in th
horizontal and vertical direction: ~0,p! walls cost
E(0,p)5EA per unit length, ~2,0! step cost
E(2,0)5EA2EB , and ~2,p! steps exist only as composit
objects @a ~2,0! step followed by a ~0,p! wall, i.e.,
E(2,p)52EA2EB].

Walls tend to run in the diagonal direction, but ste
switch direction. Deep inside theR(2m,u) phase to the left
of the lineEA/EB.20.7 the steps tend to run in the diagon

r-
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55 1335ROUGHENING-INDUCED DECONSTRUCTION IN~100! . . .
direction.D is small, but this is the part of the phase diagra
where the walls cost much less energy. The surface de
structs into the DOF (2m) phase before it roughens. Alon
zB50 the model reduces to the Ising model, and therefore
deconstruction transition takes place atzA511A2. In the
zeroth order approximation, the deconstruction line is
cated atzA511A2 for all EB , since the wall energy doe
not involveEB .

Deep inside theR(2m,u) phase to the right of the line
EA/EB.20.7, steps tend toward vertical and horizontal
rections. The~2,0! steps are most favorable, andD is large.
However, roughening cannot take place untilEB andEA are
of the same order of magnitude. Roughening takes plac
approximately exp@E(2,0)/kBTR#.11A2 ~the Ising formula
gives reasonable estimates for transition temperatures in
eral!. We can construct two different estimates for the roug
ening line in Fig. 1, by assuming~2,0! steps run vertically or
diagonally. These estimates are quite close to each o
This means that near the roughening transition theE(2,0)
steps run almost equally likely in the diagonal direction as
the horizontal or vertical directions.D must be small near the
roughening transition.E(2,p) steps come into play, and th
RR phase is narrow at best.

IV. FULLY PACKED LOOP GAS
ON A SQUARE LATTICE

Carlon and co-workers@5,6# realized recently that along
the lineszA1zB51 andzA5zB61 ~the dashed lines in Fig
1! the staggered six-vertex model maps onto the four-s
Potts model, and that thezA5zB11 line seems to lie in be
tween the Ising and Kosterlitz-Thouless~KT! roughening
lines. This mapping has been known actually for a long ti
but not from this perspective. For details, we refer to
original source@23#. Carlon and van Beijeren@6# expect that
the Potts line will turn out to be a type of disorder line, a
thus will explain that the Ising and roughening lines can
meet, in accordance with their numerical results@1#. The
properties of this line are much more intriguing. The ess
tial observation is that along the Potts line the six-ver
model reduces to a fully-packed~FP! loop-gas.

In the six-vertex representation of the BCSOS model,
arrow points along each bond of the lattice, to denote
height difference between nearest-neighbor colum
hA2hB561. Figure 4~a! shows the six allowed verte
states. In the loop-gas model every bond contains a l
segment. The loops follow the bonds of the lattice,
closed, and do not intersect. It is a fully packed loop g
Figure 4~b! shows the two possible vertex states,A andB.
The partition function is of the form

Z5(
G

zA
NAzB

NB2NL5zA
NV(
G

xNB2NL, ~4!

with the summation over all FP loop-graphsG, x5zB/zA , NA
the number of vertices of typeA, NB the number of vertices
of type B, NV5NA1NB the total number of vertices in th
lattice, andNL the number of loops. The fugacity factors of
can be counted by placing arrows on the loops; clockw
and anticlockwise arrows. Loop configurations with such
rows resemble configurations in the six-vertex model,
n-
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they are not one-to-one related. Vertex states with antipa
lel arrows, labeled 5 and 6 in Fig. 4~a!, can be interpreted a
bothA- or B-type loop states. How to deal with this is one
the essential steps of the mapping of the Potts model onto
six-vertex model: each six-vertex configuration represe
the sum over all possible loop-gas interpretations@23#. Still,
the models are only identical along special lines. In the s
vertex model, vertex states 5 and 6 are assigned a Boltzm
factor v55v651 ~both next-nearest-neighbor heights a
equal!, while in the loop gas their weights are the sum ov
all loop interpretations:v55v65zA1zB . The staggered six-
vertex model reduces to the FP loop gas, Eq.~4!, only when
these are equal, only along the linezA1zB51.

All lines of type6zA16zB51 are FP loop gases as we
due to the fact that vertex states 1 and 2~and also 3 and 4! in
Fig. 4~a! always appear in pairs~Fig. 1 has mirror symmetry
with respect tozA and alsozB!. The lineszA5zB11 and
zB5zA11 represents loop gases with negative Boltzma
weights,

Z5(
G

~21!NBzA
NAzB

NB2NL5zA
NV(
G

~21!NBxNB2NL. ~5!

These two lines are analytic continuations of each other w
0<x,1 along zA5zB11, and 1<x,` along zB5zA11;
the minus signs in Eq.~5! can be counted equally well byNB
asNA , sinceNA1NB5NV is a constant. FP loop gases ha
been a focus of attention recently@24–26#. In particular, the
FP loop gas on a honeycomb lattice resembles Eq.~4!. We
will discuss possible connections with this recent work
Sec. VII.

In the loop gas, the arrows are merely a gimmick to co
the loop fugacity. They are placed at random on each lo
Therefore it seems reasonable that any order associated
the up-down nature of the steps must be absent along

FIG. 4. The six vertex states of the six-vertex model~a!, and the
two vertex states of the loop-gas model~b!, with their Boltzmann
weights.
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1336 55DOUGLAS DAVIDSON AND MARCEL den NIJS
loop-gas line, the reconstruction order as well as the sur
flatness. This is too naı¨ve. The surface is able to mainta
flatness. Only the reconstruction order is absent. Notice
the loop-gas lines in Fig. 1 move through the DOF phas
The following visualization is quite useful. Interpret theB
sublattices as ‘‘patches of red-land’’ and theA sublattice as
‘‘patches of blue-land.’’ The loops are the coastlines. T
two vertex states in Fig. 4~b! represent the presence of eith
a bridge connecting the two patches of blue-land or the
patches of red-land. The fugacity factor 2 for each loop c
be interpreted as a random height difference ofdh561 be-
tween blue- and red-lands at each coastline, while lookin
the direction along the arrow the land on the left is lower
one unit than the land on the right.~The arrows attribute a
helicity to each coast line.! At zA50 there exist only red-land
bridges. All red patches are connected, and they are all a
same height; the surface stays flat. All blue patches are
connected and randomly distributed at heightsh61. Conse-
quently, the reconstruction order is absent. Everywhere a
the loop gas line inside the DOF (2m) phase, there exists
large continent of red-land spanning the entire lattice, a
keeping the surface flat. Moreover, all blue-lands are finite
size~lakes inside the red-land continent!. The red- and blue-
lands switch roles inside the DOF (2m11) phase. The only
other possibility is that all red- and blue-land masses
finite in size. There the surface is rough and unreconstruc
The reconstruction order is always absent along the loop
line. In Sec. V we prove this rigorously.

V. INTERFACE FREE ENERGIES

Consider the six-vertex model partition function in
semi-infinite strip geometry, and the following bounda
conditions ~BC’s!: h(x1N,y)56h(x,y)1a, with a an
even integer. The lattice forms a cylinder, infinitely long
the y-direction andN lattice sites in circumference in thex
direction. The free energy per unit strip width for each
these BC’s,f (6,a), can be calculated as the largest eige
value of the transfer matrix. The free energy differenc
h(6,a)5 f (6,a)2 f (1,0) are related to specific step, wa
and other defect free energies.

For example, theh(x1N,y)5h(x,y)12 BC forces a
step into theRA(2m) reconstruction. To see this, visualiz
theRA(2m) ground state as a crisscross structure of horiz
tal and vertical intersecting straight lines. Each carries
arrow, pointing alternately up and down~to the left and
right!. Reversing all arrows interchanges the two degene
RA(2m) states. Reversing the arrows along only one vert
line creates a step. This is a~2,0!-type step, not a~2,p!-type
step, because the arrow reversal along this specific line d
not affect theu-type order parameter on either side of t
step. The sameA-type sublattice stays on top on either sid
By reversing the arrow we create a net height differen
across the surface ofa562. The h(x1N,y)5h(x,y)12
BC matches this structure for even values ofN, and therefore
forces a~2,0! step into the surface along the entire cylind
h~1,2! is equal to the~2,0!-type step free energy everywhe
inside theRA(2m) phase.

One method to force a wall excitation into the reco
structed phase is to apply periodic boundary conditio
~PBC’s!, h(x1N,y)5h(x,y), at odd strip widthsN. To see
ce
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this is, visualize theRA(2m) ground state as an array o
elementary loops with alternate helicity. In the red- and blu
land interpretation of the loop gas theRA(2m) ground state
is the structure, in which all blue-lands are disconnected
ementary lakes, and the height changes at the coast
follow a strict up-down pattern. The coast line arrows ha
alternative helicity. We run the transfer matrix in the diag
nal direction, where the reconstructed phase fits only o
the lattice if the strip widthN is a multiple of 2. Theh(x
1N,y)5h(x,y) BC frustrates the helicity order at odd str
widths. Thereforeh~1,0!o is equal to the wall free energy.

The BCh(x1N,y)5h(x,y)12 forces a~2,p!-type step
into the reconstructed phase at odd strip widths. Other ty
of BC’s have similar effects: twist boundary condition
~TBC’s! at even values ofN create a~0,p! wall for h(x
1N,y)52h(x,y), and a~2,p!-type step forh(x1N,y)5
2h(x,y)12.

Loop-gas lines in solid-on-solid models signal spec
properties. Free energies with certain boundary conditi
become ‘‘accidentally’’ equal, implying that specific excita
tions have identical free energies. For example, the RS
model contains a~non-fully-packed! loop-gas line, which co-
incides with the exact location of the roughening line.
presence proves the existence of the preroughening trans
in that model@2#.

The partition function of the loop gas does not chan
when we modify the rules for placing the arrows on t
loops. Consider the TBCh(x1N,y)52h(x,y). The seam is
the vertical line across the entire cylinder where this bou
ary condition is being implemented.~Its location is gauge
invariant; moving the seam and deforming it does not a
the partition function.! The columns on one side of the sea
interpret the columns on the other side as being at height2h.
In the arrow representation, this means that the direction
the arrow on each loop reverses each time that loop cro
the seam. There are two types of loops, homotopic and n
homotopic. Nonhomotopic loops wrap around the cylinder
such a way that they cannot be contracted topologically i
a point ~like beads on a necklace!. The requirement that the
arrow on each loop reverses each time it crosses the sea
incompatible with nonhomotopic loops. The configuratio
with PBC’s, h(x1N,y)5h(x,y), are almost identical to
those with TBC’s,h(x1N,y)52h(x,y). Each homotopic
PBC configuration is matched by a TBC configuratio
Moreover, their Boltzmann weights are identical, since alo
the loop-gas line the reversal of arrows at the seam does
affect the Boltzmann factor. However, all nonhomotop
PBC configurations are absent for TBC’s. Therefore, the f
energiesf ~1,0!, and f ~2,0! are identical except for the con
tribution to f ~1,0! of configurations with nonhomotopic
loops. Such configurations are suppressed in theRA(2m) and
DOF (2m) phases, because all loops are finite~all blue-lands
are finite-sized lakes!. This means thath~2,0!5f ~1,0!2
f ~2,0! vanishes in the thermodynamic limit exponentia
fast withN. The latter is incompatible with reconstruction
order, sinceh~2,0! represents the free energy of a wall e
citation in theRA(2m) phase, and therefore cannot be equ
to zero. The loop gas cannot lie inside theRA(2m) phase.

To make this argument rigorous, we add the followi
aspect to the boundary conditions. Draw a second seam
associate a phase factorf5p/2 ~f52p/2! each time a loop
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55 1337ROUGHENING-INDUCED DECONSTRUCTION IN~100! . . .
crosses this seam with an arrow pointing from left to rig
~right to left!. These phase factors do not affect the Bol
mann factor of homotopic loops~the phases add up to zero!,
but they freeze out nonhomotopic loops@the phases add u
to 1

2p mod~t!#. Define free energiesh~6,a,f!5f ~6,a,f!2
f ~1,0,f!, with a50,62,64, andf50,p/2. From the above
discussion it follows that, along with loop-gas line,

h~2,0,0!5h~1,0,12p! ~6!

for all even strip widthsN. The twist boundary condition on
the left creates a frustration of the Ising order, while t
periodic-type boundary condition on the right is compatib
with Ising order. This proves rigorously the absence of lon
range Ising order along the loop-gas line. The loop-gas
cannot enter theRA(2m)-reconstructed phase, nor either
the two RR phases. It cannot cross the Ising line in Fig.

This is a rather weak result. In particular, it does not i
ply the absence of a RR phase because it does not exc
the possibility that the loop-gas line enters the rough pha
The implications of Eq.~6! become much stronger within th
constraints of the weak-coupling hypothesis. Next, we su
marize the scaling properties along every path the loop
can follow through Fig. 3 and confront each with the loo
gas symmetry Eq.~6!. This summary is important also fo
the numerical analysis in Sec. VI.

~i! Suppose the loop-gas line enters the deconstru
rough phase. The central charge is equal toc51, and all the
above surface free energies decay at largeN as the inverse of
the strip width with amplitudes that are linked to each oth
as

Nhs~1,a,f!.
KG

2
a21

1

2Kg
f2,

~7!

Nhs~2,a,0!.
p

4
.

The inverse ofKG , defined in Eq.~2!, represents the surfac
roughness. The rough phase is described by the Gaus
fluctuations at large length scales, and these relations
exact and easy to derive in the Gaussian model.KG must be
smaller thanKG,p/8, since theKT roughening transition
takes place atKG5p/8. This is a factor 4 smaller than th
conventional valueKG5p/2, because the step excitation
create a height differencedh562 instead ofdh561. The
loop-gas identity Eq.~6!, applied to Eq.~7!, yields the value
KG5p/2, inconsistent withKG,p/8. The loop-gas line can
not enter the deconstructed rough phase.@This argument
proves also that pointP in Fig. 1 must coincide with theKT
transition into theF(n1 1

2) phase.#
~ii ! Suppose the loop-gas line moves along the Ising s

face inside the rough phase, in particular the phase boun
with the RR phase dominated by~2,0!-type steps. At Ising
critical points the central charge is equal toc50.5 and the
Ising Bloch wall free energy scales as a power law w
universal amplitude

Nh i.p/4. ~8!

The central charges and universal amplitudes add up
c51.010.551.5, when the Ising and roughening degrees
t
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ry

as
f

freedom interact weakly. The roughness degrees of freed
behave as in Eq.~7!, with KG<p/8, and the Ising degrees o
freedom as in Eq.~8!. This leads to the following FSS am
plitudes:

Nh~1,2,0!.Nhs~1,2,0!.2KG ,

Nh~2,0,0!.N@hs~2,0,0!1h i #. 1
2p,

Nh~2,2,0!.N@hs~2,0,0!1h i #. 1
2p, ~9!

Nh~1,0,0!o.Nh i.
1
4p,

Nh~1,2,0!o.N@hs~1,2,0!o1h i #.2KG1 1
4p.

The loop-gas identity Eq.~6!, applied to Eq.~9!, yields the
value KG5p/4, still too large compared toKG<p/8. The
loop-gas line cannot move along the Ising plane inside
rough phase. Along the opposite Ising plane, the ph
boundary with the RR phase dominated by~2,p! steps, the
scaling relations are similar, with the two types of steps
versing roles.

~iii ! Suppose the loop-gas line follows the line segm
A-B in Fig. 3. The roughening and Ising degrees of freed
still couple weakly. The central charge remains equal
c51.5, and the wall free energy scales still asNh i.

1
4p, but

the surface roughness is constant,KG5p/8 @4#. The FSS
amplitudes are similar to those in Eq.~9!. The major differ-
ence is that the amplitudes for the two types of steps
identical by symmetry,

Nh~1,2,0!.Nh~1,2,0!o.2KG . ~10!

The two interface free energies in Eq.~6! behave the same a
in ~ii !. This again yields the valueKG5p/4, inconsistent
with KG5p/8. The loop-gas line cannot move along lin
segmentA-B.

~iv! Suppose the entire loop-gas line lies inside the D
phase. The FSS central charge estimates decay toc→0. Both
step free energies are nonzero. The Ising-wall-type free
ergy is equal to zero. However, the convergence beco
extremely slow when the Ising and roughening lines a
proach each other closely. The asymptotic forms will not
reached, and the apparent scaling will be almost indis
guishable from~ii ! or ~iii !. For DÞ0, the effective scaling
behavior will be almost identical to that in Eq.~9!, but still
be distinguishable; the surface roughness cannot exceed
valueKg5p/8. ForD50, the effective scaling behavior wil
be identical to that for~iii !. This is a fundamental dilemma in
studies of this type of phenomena. The only distinction b
tween scenarios~iii ! and ~iv! is a judgment call on whethe
the two lines merge or not in the numerical analysis. In o
case, Eq.~6! resolves the issue. It excludes~ii ! but allows
~iv!.

In summary, the loop-gas symmetries exclude all
above scenarios except the last one. The only possibil
are the following: either the roughening and Ising lines a
proach each other pathologically closely, or the roughen
and reconstruction degrees of freedom interact strongly
thus circumvent the above arguments. In any case, the I
line can never cross the loop-gas line, since that aspect
not require the weak-coupling hypothesis.
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VI. NUMERICAL RESULTS

To distinguish between the scenarios outlined in Sec. V
we calculate the exact free energiesf ~6,a,f! for semi-
infinite lattices of width 2<N<10, for several boundary con-
ditions as defined in Sec. IV. We run the transfer matrix in
the diagonal direction, where the state vector is 22N dimen-
sional. Such strip widths are in the usual range for transfe
matrix calculations. They might seem small for readers mor
familiar with Monte Carlo simulations, but realize that our
values of f ~6,a,f! are accurate to better than 12 decima
places. There is no statistical noise, unlike MC simulations
This allows a very detailed FSS analysis that incorporates th
leading corrections to scaling. It pays to trade system size fo
the ability to determine the leading corrections to scaling
because at criticality FSS corrections decay only as pow
laws. We know the exact location of the line where the re
construction and roughening transitions must merge or cro
~if they do!, the FP loop-gas linezA5zB11. This makes our
numerical analysis more accurate than earlier studies of th
same type of phenomena.

Figure 5 shows the FSS estimates for the central charg
c(N) along the loop-gas line,zA5zB11. These values fol-
low from the free energy with periodic boundary conditions
f ~1,0,0! and the conformal field theory scaling relation

f ~1,0,0!N. f 01
p

6N2 c ~11!

as

c~N!5
6

p

~N221!2

4N
@ f ~1,0,0!N212 f ~1,0,0!N11#. ~12!

Equation~11! is valid at criticality. Thec(N) approximants
of Eq. ~12! must converge to zero away from criticality~ex-
ponentially fast!. Indeed they do so inside the DOF (2m)
phase at smallzA . At criticality c(N) must converge to the
value characteristic for the universality class of the phas
transition. In Fig. 5, we present the rawc(N) data together
with our best FSS estimates forc ~the dashed line! and rather
conservative error bars~the shaded area!. At large zA , the

FIG. 5. FSS estimates for the central charge along the loop g
line for strip widthsN<10. The shaded area represents a conserva
tive estimate for the uncertainty in the extrapolated values~the
dashed line!.
,
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FSS corrections to scaling become large, and the FSS an
sis of the typec5c(N)1A/Nx becomes less reliable. Th
essential point is thatc is certainly larger thanc51.5. This
contradicts all weak-coupling scenarios~see Sec. V!. Maybe
c varies continuously along the loop-gas line, but it is mo
likely that c is a constant between 2<c<3, and that the
variation of c in Fig. 5 reflects crossover scaling behavi
between that value andc51.5 at the point where the rough
ening and Ising lines merge.

Figure 6 shows the FSS scaling behavior ofNh~1,0,0!o
andNh~2,0,0! along the loop-gas line. The first one force
an Ising wall into the reconstruction, and the second one
Ising wall and a twist in the surface. Both free energies v
ish in the DOF (2m) phase, as expected. At largezA they
scale with amplitudes that converge towards the val
Nh~1,0,0!o.p/4 and Nh~2,0,0!.p/2 ~the dashed lines!
consistent with the weak-coupling scenarios~ii !–~iv!.

Figure 7 shows the FSS behavior ofNh~1,2,0! and
Nh~1,2,0!o along the loop-gas line.Nh~1,2,0! induces a
~2,0!-type step in the surface andNh~1,2,0!o a ~2,p!-type
step. Both diverge in the DOF (2m) phase as expected~the
step free energies are finite!. At large zA , both decay as
power laws. These data are inconsistent with scenarios~i!
and ~iii !, in which Nh~1,2,0! and Nh~1,2,0!o should be-
come equal at largeN. The results are inconsistent with sc
nario ~ii ! as well, sinceNh~1,2,0! andNh~1,2,0!o should

as
-

FIG. 6.Nh~1,0,0!o @free energy of a~0,p! wall# andNh~2,0,0!
@free energy of a~0,p! wall with a twist in the surface# along the
loop-gas line for strip widthsN<10.

FIG. 7. Nh~1,2,0! @free energy of a ~2,0! step# and
Nh~1,2,0!o2Nh~1,2,0!o @free energy of a~2,p! step minus that of
a ~0,p! wall# along the loop-gas line for strip widthsN<10.
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55 1339ROUGHENING-INDUCED DECONSTRUCTION IN~100! . . .
differ by p/4 when the loop-gas line moves along the Isi
plane inside the rough phase@see Eq.~9!#. To demonstrate
this, in Fig. 7 we plotN@h~1,2,0!o2h~1,0,0!o# instead of
Nh~1,2,0!o itself. The two sets of curves should fall on to
of each other and converge towards a continuously vary
roughness parameter 2KG . Instead, they differ by a facto
close to 2. Most importantly, the data are inconsistent w
scenario~iv!, in which the roughening and Ising lines on
approach each other asymptotically closely. We should
an effective scaling behavior of the formNh~1,2,0!
.N@h~1,2,0!o2h~1,0,0!o#.2KG , with an effective rough-
nessKG>p/8. Instead, not only do the two amplitudes diff
by a factor 2, both sink well below 2KG5p/4. The surface
roughness becomes too large by a factor of about 2.

Figure 8 shows an example of the FSS behavior
Nh~1,2,0! along the cutzA1zB511 through the loop-gas
line. There exists no RR phase on either side of the loop-
line. In the reconstructed phase,Nh~1,2,0! must diverge,
and in the rough and RR phases converge to 2KG . At the KT
roughening transition, 2KG must be equal to 2KG5p/4. The
conventional method to determine the roughening temp
ture is to extrapolate the points whereNh~1,2,0!5p/4 as a
function ofN. In Fig. 8, these points lie at the reconstruct
side of the loop-gas line. They converge toward the loop-
line at such a rate that power-law fits actually overshoot
loop-gas line. This might lead to the conclusion that t
roughening line neither crosses nor merges with the loop
line. On the other hand, along the loop-gas line itself,
amplitude converges very well to a value much smaller th
p/4. This behavior is similar to what happens at a conv
tional KT-type roughening transition if one tries to estima
Tc by extrapolating the points where the FSS amplitude
larger than the true critical value,Nh~1,2,0!5p/41a with
a.0. The FSS behavior in Fig. 9 strongly supports the
sence of a RR phase.Nh~1,2,0! diverges everywhere on th
reconstruction side of the loop-gas line. Roughening seem
take place exactly at the loop-gas line, but surprisingly a
surface roughness well above the universal KT value.

Figure 9 shows two types of estimates for the critic
point where the roughening and Ising lines merge:
Nh~2,0,0! crossing points from Fig. 6, and theNh~1,2,0!
5p/4 points from Fig. 7. The existence of crossing points
Nh~2,0,0! andNh~1,0,0!o ~see Fig. 6! is quite significant.
In the more global context of Fig. 1, these crossing poi
converge to the Ising-type reconstruction lines.~This is the

FIG. 8. The step free energyNh~1,2,0! along the line
zA1zB511 for strip widthsN<10.
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conventional method to locate such critical lines.! Their pres-
ence along the loop-gas line implies that all FSS estima
for the Ising transition cross the loop-gas line. The existe
of points along the loop-gas line whereNh~1,2,0!5p/4 ~see
Fig. 7! is equally significant. These points converge to t
KT roughening lines in Fig. 1.~This is the conventiona
method to determine such roughening lines.! Their presence
along the loop-gas line implies that all FSS estimates for
roughening transition cross the loop-gas line as well~see also
the discussion about Fig. 8!. The Ising and roughening line
cross the loop-gas line from opposite directions. All finiteN
estimates for the Ising and roughening lines cross each o

Both curves in Fig. 9 must converge toEc→` if the
roughening and Ising lines only approach each other asy
totically closely. This is very unlikely, although both curve
are convex @the corrections to scaling behave
EA(N)5Ec/A/N

x, with an exponentx,1#. A conservative
estimate puts the critical point somewhere betwe
1.4,Ec,1.6.

These numerical results contradict all weak-coupling s
narios, in particular the one where the roughening and Is
lines only approach each other pathologically closely,
only one allowed by the loop-gas symmetries of Sec. V. T
most damaging evidence is thatNh~1,2,0! becomes too
small by a factor 2. It seems too far fetched that this am
tude can rebound all the way back top/4 at very largeN.
Moreover, the central charge is significantly larger than
weak-coupling valuec51.5. Finally, the FSS estimates fo
the Ising and roughening lines cross each other for all fin
N, and lead to an estimateEc.1.560.1 for the point along
the loop-gas line where they merge.

VII. CONCLUSIONS

In this paper, we study the phase diagram of the stagge
six-vertex model from the perspective of the competition b
tween surface roughening and reconstruction, and also in
context of unresolved issues about the scaling propertie
CFT with central chargec.1. In Sec. III we review the
weak-coupling hypothesis as encountered in previous stu
of this type of interplay. In particular we show that a reco
structed rough~RR! phase must be present in typicalc~232!

FIG. 9. FSS estimates for the location of the critical po
exp~2Ec!5zA5zB11 along the loop-gas line from~a! theNh~2,
0,0! crossing points in Fig. 6, and~b! theNh~1,2,0!5p/4 points in
Fig. 7.
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1340 55DOUGLAS DAVIDSON AND MARCEL den NIJS
CsCl~100!-type surfaces. The staggered six-vertex model
cludes a fully packed loop-gas line~Sec. IV!. Its special sym-
metries explain the absence of the RR phase in this partic
model. In Sec. V, we prove that the Ising-type reconstruct
line cannot cross the loop-gas line. Moreover, we dem
strate that within the context of the weak-coupling hypo
esis the roughening line cannot cross the loop-gas line eit
This would explain the results by Mazzeo, Carlon, and v
Beijeren, and put them in agreement with the generic ph
diagram Fig. 3. However, our numerical results contradict
weak-coupling scenarios. The Ising and roughening li
merge along the loop-gas line. The central charge is larg
least equal toc52 ~see Fig. 5!, and the surface roughnes
increases to a value about twice as large as the universa
value ~see Fig. 7!.

Equations~4! and~5! represent FP loop gases on a squ
lattice. The FP loop-gas model on a honeycomb~HC! lattice,
and a four-coloring problem on the square lattice, are rela
to this. Those models have large central charges as w
respectivelyc52 and 3@24–26#. Unfortunately they seem
more closely related to Eq.~4! than Eq.~5!. The partition
function of the FP loop gas on a HC lattice is similar to E
~4!, with three types of ‘‘bridge energies’’ instead of tw
za5a5A, B, andC ~the plaquettes of the HC lattice form
three sublattices instead of two!. Point P in our phase dia-
gram is a critical point with central chargec51. It is the
meeting point of two DOF phases and also the point wh
theEA5EB surface roughens~see Fig. 1!. The corresponding
point in the FP loop gas on the HC lattice,zA5zB5zC , is a
critical point with central chargec52 @24–26#. It is the
meeting point of three DOF phases, and of three critical li
with central chargec51 ~the phase boundaries between pa
of DOF phases! @27#. The scaling properties alongzA5zB
61 in Fig. 1 appear to be more complex than this. This
not surprising, since Eq.~5! includes negative Boltzman
weights.

We close with some speculations about the origin
strong-coupling scaling along the loop-gas lineszA5zB61.
It might represent an interesting type of conformal fie
et
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theory with c.1. More likely, it represents a convention
CFT, but one in which more degrees of freedom beco
critical than in Eq.~3! and Fig. 3. The obvious candidate
the Ising degree of freedom of theR(2m11,u) phase lo-
cated on the opposite side of theEA5EB line in Fig. 1. The
two reconstructed phases do not seem to meet in Fig. 1,
they actually do so via the ‘‘backdoor’’. They meet at poi
x51 in Eq. ~5!, sincezA5zB11 and zB5zA11 are each
other’s analytic continuations. A four-state clock mod
coupled to a solid-on-solid model describes both types
reconstructions simultaneously. Thes561 Ising spins in
Eq. ~3! denote which of the twoA-type sublattices is on top
in the R(2m,u) phase. Their generalizations are four-sta
clock variables,u50, 6 1

2p, p, that point in the direction of
the polarization of the arrows in vertex states 1–4 in F
4~a!. They denote which of the four sublattices is on top: o
of the two A-type sublattices,u50,p; or one of the two
B-type sublattices,u56 1

2p. Such a model has ample room
for conventional CFT’s with central chargec>2. The loop-
gas symmetries will enforce a nongeneric path through
phase diagram. Pointx51 in Eq. ~5!, where the two recon-
structions meet, is almost certainly a critical point with ce
tral chargec52. Figure 3 applies whenx51 is an isolated
critical point. In that case, the Ising and roughening lin
cannot meet untilx51 ~our exact results of Sec. V!. Instead,
our numerical analysis shows thatx51 is not an isolated
point. The next step will be an analytic calculation, to det
mine the scaling properties at pointx51. The critical dimen-
sion of the crossover operator in the loop-gas direction m
be irrelevant or marginal for the loop-gas to remain critic
until point S in Fig. 1. This line segment is probably som
sort of Baxter-line coupled to roughening, since the univer
amplitudes of both step free energies in Fig. 7 vary conti
ously.
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