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Roughening-induced deconstruction in(100) facets of CsCl-type crystals
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The staggered six-vertex model describes the competition between surface roughening and reconstruction in
(100 facets of CsCl-type crystals. Its phase diagram does not have the expected generic structure, due to the
presence of a fully packed loop-gas line. We prove that the reconstruction and roughening transitions, cannot
cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical
finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong-coupling
scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface rough-
ness much larger than the conventional universal value. It seems that additional fluctuations become critical
simultaneously[S1063-651X97)13001-X

PACS numbg(s): 64.60.Fr, 68.35.Rh, 82.65.Dp, 68.35.Bs

[. INTRODUCTION be similar to a so-called disorder line, and this explains their
numerical resultgthe noncrossing of the Ising and roughen-
In a recent paper, Mazzeo, Carlon, and van Beijgddn ing lines. In Sec. IV we show that this line is equivalent to
discussed the competition between surface roughening aralfully packed loop gas on a square lattice.
reconstruction irc(2x 2)-reconstructed100) facets of CsCl- In Sec. V, we prove rigorously that the reconstruction line
type crystals. Their numerical finite size scalifB9 results  cannot cross the loop-gas line. Furthermore, we show that
for the staggered six-vertex model are quite surprising. Theéhe roughening line also cannot cross the loop-gas line if the
phase diagram lacks a so-called reconstructed rdiRi®) roughening and reconstruction degrees of freedom couple
phase, although such a phase is a generic feature in surfacesakly. The weak-coupling hypothesis assumes that the re-
where step excitations do not destroy the reconstruction oronstruction and roughening degrees of freedom interact
der. The phase diagram should have the same structure as feeakly, such that their scaling properties are a superposition.
missing rom(MR)-reconstructed simple-cubisc) (100 fac-  Earlier studies of models for MR-reconstructed1d®) and
ets[2—4]. The roughening and reconstruction lines should beficc(110 facets strongly support the weak-coupling hypoth-
able to cross. Instead they only seem to approach each othesis[2—4]. It should hold for CsGL00 as well, since the
exponentially closely. In this paper, we explain why this hap-cell-spin model in Sec. Il is the same.
pens. The absence of a RR phase in the staggered six-vertex This seems to resolve the issue. The phase diagram found
model is accidental, the result of a special symmetry of théby Mazzeo, Carlon, and van Beijeréfi] is the only one
interactions in this particular model, the presence of a fullyallowed within weak-coupling theory, but it is an accident.

packed loop-gas line. The special symmetries of the loop-gas line cause this par-
In Sec. I, we review the rich history of the staggeredticular model to follow a special cut through the generic
six-vertex model. In Sec. lll, we describe the topologicalphase diagram. The roughening and Ising lines approach

properties of step and wall excitations ic(2X2)- each other only pathologically closely, because entropy
reconstructed CsC100. We set up the cell-spin model de- cannot be lowered far enough to reach the crossing point into
scription for this type of competition between surface roughthe RR phase. In general, the interactions in CsCl-type sur-
ening and reconstruction. Topological considerationdaces will be more generic, and allow the RR phase. How-
determine whether the roughening and reconstruction linesver, this is not the end of the story.
can cross or only merggvhether an RR phase is possible or  In Sec. VI we present our numerical FSS results. Mazzeo,
not). For example, in MR-reconstructed($t0 facets they Carlon, and van Beijerefl] performed their study before
can cross, but in MR-reconstructed (tt0) facets they can they discovered the loop-gas line. Knowledge of the exact
only merge[2—4]. We show that inc(2X2) reconstructed location of the line where the roughening and reconstruction
CsCl100) they are allowed to cross. The competition in thislines must merge or crosd they do s enhances the accu-
surface is in the same universality class as in MR-racy of the analysis considerably. We find that the scaling
reconstructed $t10) facets. However, the RR phase in the behavior along the loop-gas line does not obey the weak-
staggered six-vertex model is at best narrow. We estimate theoupling hypothesis.
energies of two topologically distinct types of steps, and find The question of weak versus strong-coupling-type compe-
that they cost almost the same energy in the region of thétion between reconstruction and roughening degrees of
phase diagram where the surface roughens. freedom is an important unresolved issue in the theory of
Carlon and co-workeii$,6] pointed out the existence of a two-dimensional(2D) critical phenomena. It appears not
special line in the phase diagram. It runs in between the Isingnly in surface physics, but also, e.g., in coupled Josephson
and roughening lines. Along this line the partition function isjunction arrays in a magnetic fieldhe fully frustratedXY
equivalent to the four-state Potts model on a square latticenode) [7—13]. The phase diagrams of these problems share
with negative Boltzmann weights. They expected this line toas a basic feature a conventional order-disorder transition
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line (such as an lIsing or three-state Potts transjti@p- B,
proaching a criticalrough phase. A critical line described kT
by conformal field theorCFT) with central chargec<1 20}
competes with a critical phase with central chatgel. The
fundamental question is whether interesting CFT’s can result R(2m.8) s
from this competition. The theorem[14,15 implies that ul
such CFT’s must have a central charge lower than 1. The A
ones we know are rather simple direct productgsflL and 7 decon-
c<1 theories, some with extra symmetries, such as super-"°[ Ising 7 fsieted
symmetry, between the two types of degrees of freedom. o
This supports the weak-coupling hypothesis. However, do =/
more interesting types af>1 CFT'’s really not exist? Can e teanl
the coupling between two types ok1 degrees of freedom o
ever lead to more intricate>1 scaling behavior? This ques-  0.0}——DoF(zm) o
tion is the driving force behind a large number of numerical K
studies, in particular within the context of the fully frustrated ’
XY model and the competition between surface roughening Solp
and reconstructioi1—13. But this has proved to be ex- Ising N
tremely difficult to answer. ol N
. -1.0FF(n+5 ) f&

Three types of answers are possible and each has ap- z
peared in the literature. The first one is that thel line o YR o 20 By
cannot reach the=1 phase. The line can only approach this o
phase pathologically close. This suggests the existence of a
no-go theorem of some sort. Our exact results in Sec. VG, 1. Phase diagram of the staggered six-vertex model defined
amount to such a no-go theorem, but only for the staggeregh £q. (1). At point S the Ising reconstruction and KT roughening
six-vertex model, and only within the weak-coupling hypoth- lines merge into a single transition along the loop-gas (iteeshedl
esis.

The second possibility is the weak-coupling scenario. Thg, —+1 +3 +5 ... . TheB-type atoms occupy thB su-

reconstruction and roughening lines cross or merge, but thﬁlattice where the column heights are eveg=0, +2, =4

two types of critical fluctuations interact weakly and behave Nearest-neighbor stacks differ in height by only one
like a direct product. The central charge is equal to the sum .. °

nit, dh==*1. The surface energy is given b
(c=1.5in our case, since=0.5 at Ising critical points, and ant . gy is gv y
c=1 inside the rough phagseThis type of behavior is almost

R(2m+1,0)

~
Ising

DOF(2m+1)

1
indistinguishable from the effective scaling when the two H=—ZE {EA(h(X’y)—h(x+1yil))2
lines approach each other only pathologically cltsee Sec. Xy
V). Typically, the numerical data can be interpreted both +Ea(h —h 2 1
ways[7—-13). Fortunately, our exact results in Sec. V distin- 8N 1)~ Mocyx1))7)- @
guish between the two in the six-vertex model. The summation runs over only thetype sublattice sitegall

The third possibility is that the lines cross or merge with agyen values ok+y).
scaling behaviqr different from a simple supgrppsition. The  This model has a rich history. Figure 1 shows its phase
central charge is not equal to the sum. Convincing evidencgjagram. It is exactly soluble by the Bethe ansatz along the
for strong coupling would revolutionize CFT at>1. Nu-  |ine E,—=Eg, where it reduces to the so-callEdmodel[16—
merical evidence of strong coupling has been presented iTS]. We denote the flat phase B¢n+ 1), because the aver-
models related to the fully frustratedy model, but remains 546 surface height is a half-integer. A more detailed notation
ambiguous[7-13. We find strong numerical evidend® 5" i terms of the heights at four sublattices
Sec. V) that' the roughening and reconstruction lines in t'he ha+.ha_:hg s+ .hg_)=(n+1n+1;n,n). The + and —
staggered six-vertex model merge along the loop-gas lingngices represent the twécheckerboard typesublattices
with strong-coupling scaling properties. _ within eachA andB sublattice. AlongE,=Ejg, elementary

In Sec. VII, we summarize our results, d|scgss relatedstep excitations induce a height changé. They roughen
recent results for fully packed loop gases on different latho surface azy=7zg=3, with zy=expEx/ksT) and zg
tices, gnd give a possible explanation for the strong-coupling. expEa/keT) [16-18.
behavior. E, andEg are not equal in CsCl-type surfaces, since the
A- andB-type atoms interact differently. Knops9] realized
that this changes the disordering of thén+ 3) phase. He
used the equivalence of E1L) to the Ashkin-Teller model.

The (100 facets of CsCl-type crystals have a body- Rephrased from the more recent perspective of preroughen-
centered-type stacking with two kinds of atoms, typeand  ing (PR) transitions and disordered flalbOF) phases, his
B. The appropriate solid-on-solid description is a staggeredesults are as follows=(n+ 3) contains two types of steps,
body-centered solid-on-soliBCSOS model, equivalent to S, andSg. In surfaces with a heightr@+ 3, up-steps are of
a staggered six-vertex model. Stacks Afoccupy theA  type Sz and down-steps are of tyf#, (they reverse roles in
sublattice, where the column heights are odd numberssurfaces with a height@—3). —E, is the energy ofS,

Il. STAGGERED SIX-VERTEX MODEL
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steps(per unit length, and—Eg of S; steps. The free energy
of S, steps vanishes before that 8f steps on thé&e,>Eg 0@
side of the phase diagram. This does not cause roughening ;i\l
yet, since building up a slope in the surface requBgsteps
as well. Only the spontaneous symmetry breaking between<l? {2z <kagor B » X 8| At X2 A9
pairs of surface heights,n@+ 3 and 2n—3, is lifted. The
result is a DOF phase with lots &,-type steps in the sur-
face, but still flat at large length scales. In Fig. 1, we denote w2 X 2 n2a B o
this as the DOF (&1) phase, because the average surface
height is an even integern2 .
This is an example of PR transition, but in a different 900 .....
universality class than the conventional dr&4]. In both
cases the average surface height changes spontaneously by
half a unit. At conventional PR transitions the number of (2,0) {(0,n) (2,m)
degenerate equivalent surface heights does not change. They
all shift by one-half unit, and the distance between them FIG. 2. Excitations inside thR,(2m, #)-reconstructed phase: a
remains the same. In this example, however, the distanc@,0) step,(0,7) wall, and(2,7) step running in the diagonal direc-
between degenerate equivalent surface heights increaséen. The shaded areas represent Biesublattice. The wiggly
from 1 to 2. The elementary step height is equatito=+1  (circled lines represent&,- (Eg)-type broken bonds.
in theF(n+3) phase, but equal h=+2 in the DOF (2n)
phase. Therefore, this is a simple Ising line instead of a linyetween deconstruction of this type of order and surface
with continuously varying critical exponents. roughening is the topic of this paper, in particular the exist-
This doubling in the basic step height not only changesnce of pointS in Fig. 1, and the scaling properties of the
the nature of the transition into the DOF phase; it also delaygritical line beyond this point.
the roughening transition considerably, even for small en- Figure 1 has mirror symmetry with respect E =Ej.
ergy differences,—Eg [19]. The surface roughness is char- The A- and B-type particles switch roles. In the lower right
acterized by the amplitude of the height-height correlationgorner of Fig. 1 the surface height is an odd integer. The
as surface reconstructs into aRg(2m+1,0) phase, and the
DOF phase is of type DOF {@+1).

1
<(hr+r0_hr0)2>zmln(|r|): (2)
G Ill. STEPS AND WALLS IN THE c(2x2) PHASE

where Kg' is the surface roughness parameter. Rough Reconstructed surfaces can disorder in several ways: they
phases become unstable with respect to discreteness of tban lose their reconstruction first and then roughen; they can
surface height aKg= 7/8 for a step sizelh=*2 compared roughen first and only later deconstruct; or roughening can
to Kg= /2 for a step sizelh==*1, in other words, not until induce a simultaneous deconstruction transition. The latter
the surface is four times as rough. In this particular modelhappens when the topology of the surface implies that steps
these roughening lines lie at the side of the phase diagramlestroy the reconstruction order parameter. Figure 2 shows
where both step energies are negatibeth E, andEg are  the three topologically distinct line excitations in the
positive). Point F in Fig. 1 is located aza=zg=+/(1+1 Ra(2m, 6) phase: & +2,m) step, a(0,7) wall, and a(—2,0)
J2)=1.306 56. The local structure of the phase diagranstep. Wall excitations do not change the surface height. They
around poinf is known as a “critical fan”[20]. Notice that cause a switch in which of the twA-type sublattices is on
unreconstructed surfaces described by @ynever roughen top. Steps of typé+2,0) change the surface height by2,
(except alonge,=Eg). They follow specific paths through but do not change the Ising order parameferthe same
Fig. 1, which are approximately lines at constBpfEg with  A-type sublattice stays on top. Steps of tyge2,7) change
bothE, andEg negative. Such lines do not enter the critical the surface height by+2, and switch which of the two
fan. The absence of a roughening transition is not a generid-type sublattices is on top.

feature, however. Experimental unreconstructed (<X0)- It is an illusion to think that(+2,7) steps destroy the
type surfaces will include step-step interactions and othereconstruction order. They preserve a different definition of
aspects that are able to move pdimtowardz,=zz=1 and the reconstruction order. This can be expressed in terms of
beyond. which sublattice is on top#=0,, or in terms of parity spins,

In the upper left corner of Fig. 1 the surface reconstructsSy=exg 3ivh,] = + 1. The S, spins are ordered antiferro-
All B-type columns are at the same heightn,2and magnetically in theR,(2m, 6) phase. These two definitions
the A-type columns alternate betweenmz1; e.g., of the Ising order are equivalent to flat surfaces but inequiva-
(hat,ha_, hgi,hg_)=(2m+1,2m—1,2m,2m). We call lentin rough surfaces. Thie:2,m) steps destroy the sublat-
this theR,(2m, 6)-reconstructed phase. The average surfacéice order but preserve the parity order. The2,0) steps
height is an even integer. The Ising-type order parametedlestroy the parity order but preserve the sublattice order.
0=0,7 denotes which of the twa-type sublattices is on top. Two types of RR phases are possible: the surface is rough,
The average surface height is the same as in the D@# (2 but such that th&, order parameter remains nonzero; or the
phase. The difference is the appearance of antiferromagnetisurface is rough, but such that th@rder parameter persists.
type ordering of theA-sublattice heights. The competition In diffraction experiments, the roughening transition can be
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T represent wall excitations in the surface, and ®ype
Bloch walls represen®,0)-type steps. Place one arrow along
T eachS-type Bloch wall to denote the direction in which the

height changes across the stépp from left to right while
looking in the direction along the arrgwSections along the
lattice whereS- and o-type Bloch walls coincide represent
(2,m)-type steps. The following change of variables gener-
ates the mirror symmetry in Fig. 3. Define Ising spifiso'S

to represent thé2,m)-type steps and then eliminate tle
spins, (0,9)—(7,S). This leads us back to Eq3), but with
the 7 spins replacing the spins, and wittK ,«<K . The two
RR phases switch places.

This transformation is reminiscent of supersymmetry be-
tween the fermiortlsing) and bosor(heigh) degrees of free-
dom. It is weaker than supersymmetry, onlg atype invari-
ance[4]. At the same time it is more general, an exact
symmetry of the lattice model not restrictedTip. The entire
A=0 space is invariant, instead of only the critical line

FIG. 3. Generic phase diagram for the competition between surf\ ~ B- We expect that critical fluctuations generate full su-
face roughening and the Ising-type reconstructisee Eq.(3)], persymmetry at large length scales. The roughening-induced
with A the energy difference betwed,0)- and (2,m)-type steps, simultaneous deconstruction transition alolgB will then
andR the difference between the energy ofGm) wall and the ~ be described by a supersymmetric CFT, probably one with
average step energy. central charge=1.5 where the roughening and reconstruc-

tion are weakly coupled.
easily mistaken for a simultaneous deconstruction transition. Experimental systems and microscopic models follow
The “reconstruction diffraction peak” couples only to one specific cuts through Fig. 3. For example, the antiferromag-
of the two order parameters$ypically the parity ong and  netic restricted solid-on-solid model describes checkerboard-
that order might not be the type that persists in the RR phaséype-reconstructed §000) facets[2,4]. Indeed, its phase dia-

Along paths where either type of step costs less energgram represents a generic slice out of Fig. 3 with a DOF
than a wall, the surface roughens first, into the appropriatghase and an RR phase; and the Ising and roughening de-
RR phase, followed by an Ising-type deconstruction transigrees couple weakly with central charge 1.5[2,4]. One of
tion inside the rough phase. Along paths where walls costhe exactly soluble generalized RSOS mod@&| moves
less than steps, the surface deconstructs into the D@ (2 along the Ising surface in Fig. 3 as well, and confirms weak-
phase, and only later roughens. coupling behaviof22]. A third example is the chiral four-

Figure 3 illustrates these different typical behaviors. It is astate clock-step modg#] which describes MR-reconstructed
schematic phase diagram for the following mopgl Each  fcc(110 facets. Topology requires the two types of steps in
site of a square lattice contains an Ising spif=*1, and a  those surfaces to have identical energies. The nonchiral limit
height variableh,=0,+2,+4, ... .They interact as of the four-state clock-step model coincides with the0

plane of Eq.(3). Numerical evidence supports the expecta-

deconstructed rough

reconstructed

1 5 tion that alongA-B the Ising and roughening degrees of
H=~- E Ko(’r”rr+§(K70r"rr+Kh)[z_(hr_hrr) 1 freedom couple weakly wite=1.5.
e’y 3) The phase diagram of the staggered six-vertex model

should be a generic cut through Fig. 3, similar to the RSOS

with r andr’ nearest-neighbor sites. Only steps of heightmodel. There is no intrinsic topological requirement foto
dh=+2 are allowed. o,=cogw#)=*1 represents the be zero. However, Mazzeo, Carlon, and van Beijeren did not
sublattice-type reconstruction order parameter, lgnithe lo- ~ find an RR phase.
cal surface height. Walls coBt(0,7)=2(K ,+K ). Steps cost One possible explanation is thatis small or vanishes
E(2,0=2(K,+K,) and E(2,m=2(K,+K,), respectively. “accidentally” in the six-vertex model. The wall and steps
This is a renormalized effective model, on a larger lengthin Fig. 2 run diagonally across the surface. In that direction,
scale than the staggered six-vertex model. It must be in ththe two types of steps cost the same amount of energy per
same universality class in the local neighborhood about thenit length, E(2,0)= E(2,7m)=3J2(2EA—Eg). A wall cost
reconstructed phase, assuming we correctly identify all criti€(0,7) = 2\/2E ». This suggests that is equal to zero. How-
cal fluctuations of the six-vertex model in this part of the ever, A is quite large for walls and steps running in the
phase diagram. Figure 1 should follow a specific 2D cuthorizontal and vertical direction: (0,7) walls cost
through Fig. 3. E(0,m)=E, per unit length, (2,00 step cost

The mirror symmetry in Fig. 3 with respect to=E(2,0) E(2,0)=E,—Eg, and (2,7) steps exist only as composite
—E(2,7) reflects the equivalence between the two definitionobjects [a (2,00 step followed by a(0,7) wall, i.e.,
of the reconstruction order. Consider the following construcE(2,7w) =2E,— Eg].
tion of a typical configuration. Define a second type of Ising Walls tend to run in the diagonal direction, but steps
spin S,= exp(iwh,)==*1, and drawo- and S-type Bloch  switch direction. Deep inside thR(2m, §) phase to the left
walls along the bonds of the lattice. Thetype Bloch walls  of the lineE,/Eg=—0.7 the steps tend to run in the diagonal
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direction.A is small, but this is the part of the phase diagram
where the walls cost much less energy. The surface decon-
structs into the DOF (&) phase before it roughens. Along
zg=0 the model reduces to the Ising model, and therefore the
deconstruction transition takes place at=1+ V2. In the
zeroth order approximation, the deconstruction line is lo-
cated atzy=1+ /2 for all Eg, since the wall energy does
not involveEg.

Deep inside theR(2m, ) phase to the right of the line
E /Eg=—0.7, steps tend toward vertical and horizontal di-
rections. The(2,0) steps are most favorable, addis large.
However, roughening cannot take place ubl andE, are
of the same order of magnitude. Roughening takes place at
approximately exfE(2,0)/kgTr]=1+ /2 (the Ising formula
gives reasonable estimates for transition temperatures in gen-
eral). We can construct two different estimates for the rough-
ening line in Fig. 1, by assumin@,0) steps run vertically or
diagonally. These estimates are quite close to each other.
This means that near the roughening transition E{i2,0)
steps run almost equally likely in the diagonal direction as in (b)
the horizontal or vertical directiond must be small near the
roughening transitionE(2,7) steps come into play, and the
RR phase is narrow at best. FIG. 4. The six vertex states of the six-vertex mo@g) and the
two vertex states of the loop-gas modb), with their Boltzmann
weights.

IV. FULLY PACKED LOOP GAS

ON A SQUARE LATTICE . .
Q they are not one-to-one related. Vertex states with antiparal-

Carlon and co-worker§5,6] realized recently that along lel arrows, labeled 5 and 6 in Fig(a}, can be interpreted as
the linesz,+zg=1 andz,=zg*1 (the dashed lines in Fig. bothA- or B-type loop states. How to deal with this is one of
1) the staggered six-vertex model maps onto the four-statthe essential steps of the mapping of the Potts model onto the
Potts model, and that the,=zz+1 line seems to lie in be- six-vertex model: each six-vertex configuration represents
tween the Ising and Kosterlitz-Thoule$KT) roughening the sum over all possible loop-gas interpretatif. Still,
lines. This mapping has been known actually for a long timethe models are only identical along special lines. In the six-
but not from this perspective. For details, we refer to thevertex model, vertex states 5 and 6 are assigned a Boltzmann
original sourcg23]. Carlon and van Beijeref6] expect that factor ws=wg=1 (both next-nearest-neighbor heights are
the Potts line will turn out to be a type of disorder line, andequa), while in the loop gas their weights are the sum over
thus will explain that the Ising and roughening lines cannotall loop interpretationsws=wg=2z,+25. The staggered six-
meet, in accordance with their numerical resilty. The vertex model reduces to the FP loop gas, @g. only when
properties of this line are much more intriguing. The essenthese are equal, only along the ling+zg=1.
tial observation is that along the Potts line the six-vertex All lines of type +z,+ =zg=1 are FP loop gases as well,
model reduces to a fully-packd&P) loop-gas. due to the fact that vertex states 1 angh@d also 3 and)in

In the six-vertex representation of the BCSOS model, arFig. 4(a) always appear in pair$ig. 1 has mirror symmetry
arrow points along each bond of the lattice, to denote thavith respect toz, and alsozg). The linesz,=2zz+1 and
height difference between nearest-neighbor columngz=z,+1 represents loop gases with negative Boltzmann
ha—hg==1. Figure 4a) shows the six allowed vertex weights,
states. In the loop-gas model every bond contains a loop
segment. The loops follow the bonds of the lattice, are
closed, and do not intersect. It is a fully packed loop gas.

z=2 (—1)NezAzyB2N =7}V > (—1)NexNe2Ne, (5)
g g
Figure 4b) shows the two possible vertex statésand B.

The partition function is of the form These two lines are analytic continuations of each other with
0=x<1 alongzy=2zz+1, and =x<w alongzg=2z,+1;
z=> ZQAZSBzNL:ZEVE xNeoNL (4) the minqs signs in E45) can be counted equally well byg
G G asN,, sinceNp+Ng=Ny is a constant. FP loop gases have

been a focus of attention recenfl®4—-24. In particular, the
with the summation over all FP loop-grapfisx=zg/z,, N4 FP loop gas on a honeycomb lattice resembles(Eq.We
the number of vertices of typ&, Ng the number of vertices will discuss possible connections with this recent work in
of type B, N,,=N,+Ng the total number of vertices in the Sec. VII.
lattice, and\, the number of loops. The fugacity factors of 2 In the loop gas, the arrows are merely a gimmick to count
can be counted by placing arrows on the loops; clockwisghe loop fugacity. They are placed at random on each loop.
and anticlockwise arrows. Loop configurations with such ar-Therefore it seems reasonable that any order associated with
rows resemble configurations in the six-vertex model, buthe up-down nature of the steps must be absent along the
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loop-gas line, the reconstruction order as well as the surfacthis is, visualize theR,(2m) ground state as an array of
flatness. This is too nee. The surface is able to maintain elementary loops with alternate helicity. In the red- and blue-
flatness. Only the reconstruction order is absent. Notice thdand interpretation of the loop gas tiR,(2m) ground state

the loop-gas lines in Fig. 1 move through the DOF phasess the structure, in which all blue-lands are disconnected el-
The following visualization is quite useful. Interpret tBe  ementary lakes, and the height changes at the coast lines
sublattices as “patches of red-land” and thesublattice as  follow a strict up-down pattern. The coast line arrows have
“patches of blue-land.” The loops are the coastlines. Thegjternative helicity. We run the transfer matrix in the diago-
two vertex states in Fig.(8) represent the presence of either 5| girection, where the reconstructed phase fits only onto
a bridge connecting the two patches of blue-land or the tWQpq |attice if the strip widthN is a multiple of 2. Theh(x
patches of red-land. The fugacity factor 2 for each loop can, N,y) =h(x,y) BC frustrates the helicity order at odd strip

be interpreted as a random height differe_:nC@I b%tl be_- .widths. Thereforen(+,0), is equal to the wall free energy.
tween blue- and red-lands at each coastline, while looking in The BCh(x+N,y)=h(x,y)+2 forces a(2,m)-type step

the dire_ctiﬁn al?]ngl the arrovr\: th? Ianﬁ on the left is_lower byinto the reconstructed phase at odd strip widths. Other types
one unit than the land on the righThe arrows attribute a of BC’'s have similar effects: twist boundary conditions

helicity to each coast lingAt z, =0 there exist only red-land (TBC's) at even values oN create a(0,m) wall for h(x

bridges. All red patches are connected, and they are all at tth y)=—h(x,y), and a(2,m)-type step forh(x+N,y)=

same height; the surface stays flat. All blue patches are dis- h(x.y)+2
connelcteﬁ and randomly d|st(;|bu_tedbat he'%mﬁl' Chonse—l Loop-gas lines in solid-on-solid models signal special
quently, the reconstruction order is absent. Everywhere alongy e rties. Free energies with certain boundary conditions

the loop gas line inside the DOF i phase, there exists a (?ecome “accidentally” equal, implying that specific excita-
i

Ikarge_ conr:inentfof reﬂd-land spanningl;l tt)Te elznti(rje Iatti?_e,_ aN%ions have identical free energies. For example, the RSOS
eeping the surface flat. Moreover, all blue-lands are finite iy, 6| contains &non-fully-packed loop-gas line, which co-
size(lakes inside the red-land contingnthe red- and blue- g yp dloop-g '

. S incides with the exact location of the roughening line. Its
lands SW'tC.h .r_oleg inside the DOF 12+ 1) phase. The only 1 aqance proves the existence of the preroughening transition
other possibility is that all red- and blue-land masses ar§| that model[2]
finite in size. There the surface is rough and unreconstructed. '

) . The partition function of the loop gas does not change
'I_'he reconstruction order |s_alvyays absent along the 100p-938en we modify the rules for placing the arrows on the
line. In Sec. V we prove this rigorously.

loops. Consider the TB@(x+ N,y)=—h(X,y). The seam is
the vertical line across the entire cylinder where this bound-
V. INTERFACE FREE ENERGIES ary condition is being implementedits location is gauge
invariant; moving the seam and deforming it does not alter
Consider the six-vertex model partition function in a the partition function. The columns on one side of the seam
semi-infinite strip geometry, and the following boundary interpret the columns on the other side as being at heidht
conditions (BC’s): h(x+N,y)==*=h(x,y)+a, with a an In the arrow representation, this means that the direction of
even integer. The lattice forms a cylinder, infinitely long in the arrow on each loop reverses each time that loop crosses
the y-direction andN lattice sites in circumference in the  the seam. There are two types of loops, homotopic and non-
direction. The free energy per unit strip width for each ofhomotopic. Nonhomotopic loops wrap around the cylinder in
these BC's,f(*+,a), can be calculated as the largest eigen-such a way that they cannot be contracted topologically into
value of the transfer matrix. The free energy differencesa point(like beads on a necklageThe requirement that the
n(*,a)="f(=x,a)—f(+,0) are related to specific step, wall, arrow on each loop reverses each time it crosses the seam is
and other defect free energies. incompatible with nonhomotopic loops. The configurations
For example, then(x+N,y)=h(x,y)+2 BC forces a with PBC’s, h(x+N,y)=h(x,y), are almost identical to
step into theR,(2m) reconstruction. To see this, visualize those with TBC's,h(x+N,y)=—h(x,y). Each homotopic
the R,(2m) ground state as a crisscross structure of horizonPBC configuration is matched by a TBC configuration.
tal and vertical intersecting straight lines. Each carries amMoreover, their Boltzmann weights are identical, since along
arrow, pointing alternately up and dow(o the left and the loop-gas line the reversal of arrows at the seam does not
right). Reversing all arrows interchanges the two degenerataffect the Boltzmann factor. However, all nonhomotopic
Ra(2m) states. Reversing the arrows along only one verticaPBC configurations are absent for TBC's. Therefore, the free
line creates a step. This is(3,0-type step, not &2,7)-type  energies(+,0), andf(—,0) are identical except for the con-
step, because the arrow reversal along this specific line dodsbution to f(+,0) of configurations with nonhomotopic
not affect theé-type order parameter on either side of theloops. Such configurations are suppressed irRf{[@m) and
step. The sam@-type sublattice stays on top on either side.DOF (2m) phases, because all loops are firiat blue-lands
By reversing the arrow we create a net height differenceaare finite-sized lakgs This means thaty(—,0)=f(+,0)—
across the surface @a=*2. The h(x+N,y)=h(x,y)+2 f(—,0) vanishes in the thermodynamic limit exponentially
BC matches this structure for even valuedNofand therefore fast with N. The latter is incompatible with reconstructional
forces a(2,0) step into the surface along the entire cylinder.order, sincer(—,0) represents the free energy of a wall ex-
7n(+,2) is equal to thd2,0)-type step free energy everywhere citation in theR,(2m) phase, and therefore cannot be equal
inside theR,(2m) phase. to zero. The loop gas cannot lie inside tRg(2m) phase.
One method to force a wall excitation into the recon- To make this argument rigorous, we add the following
structed phase is to apply periodic boundary conditionsspect to the boundary conditions. Draw a second seam and
(PBC's), h(x+N,y)=h(x,y), at odd strip widthd\. To see  associate a phase factor= /2 (¢p=—=/2) each time a loop
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crosses this seam with an arrow pointing from left to rightfreedom interact weakly. The roughness degrees of freedom
(right to left). These phase factors do not affect the Boltz-behave as in E(7), with Ko=<7/8, and the Ising degrees of
mann factor of homotopic loopshe phases add up to zgro freedom as in Eq(8). This leads to the following FSS am-
but they freeze out nonhomotopic loofike phases add up plitudes:
to 37 mod7]. Define free energieg(*+,a,¢)=f(*+,a,¢)—
f(+,0,¢), with a=0,+2,+4, and$=0,7/2. From the above N#7(+,2,0=Nns(+,2,0=2Kg,
discussion it follows that, along with loop-gas line,

N7(—,0,0=N[7¢(—.,0,0+ 7]=3m,

7](_!010): 7](+!01%7T) (6) 1
N7(—.,2,0=N[7s(—,0,0+ 7]]=3, €)
for all even strip widthsN. The twist boundary condition on
the left creates a frustration of the Ising order, while the N7(+,0,0,=Nz=3m,
periodic-type boundary condition on the right is compatible
with Ising order. This proves rigorously the absence of long- N7(+,2,0,=N[ 75 +,2,0,+ 7;]=2Kg+ 5.

range Ising order along the loop-gas line. The loop-gas line
cannot enter th&®,(2m)-reconstructed phase, nor either of The loop-gas identity Eq(6), applied to Eq.(9), yields the
the two RR phases. It cannot cross the Ising line in Fig. 1. value Kg=m/4, still too large compared t&s<m/8. The
This is a rather weak result. In particular, it does not im-loop-gas line cannot move along the Ising plane inside the
ply the absence of a RR phase because it does not exclu#ieugh phase. Along the opposite Ising plane, the phase
the possibility that the loop-gas line enters the rough phasdoundary with the RR phase dominated (@) steps, the
The implications of Eq(6) become much stronger within the Scaling relations are similar, with the two types of steps re-
constraints of the weak-coupling hypothesis. Next, we sumversing roles.
marize the scaling properties along every path the loop gas (i) Suppose the loop-gas line follows the line segment
can follow through Fig. 3 and confront each with the loop-A-B in Fig. 3. The roughening and Ising degrees of freedom
gas symmetry Eq(G)_ This summary is important also for still couple Weakly. The central charge remains equal to
the numerical analysis in Sec. VI. c=1.5, and the wall free energy scales stillNig;= 3, but
(i) Suppose the loop-gas line enters the deconstructeidie surface roughness is constaki;=7/8 [4]. The FSS
rough phase. The central charge is equal#dl, and all the ~amplitudes are similar to those in E@). The major differ-
above surface free energies decay at ldgas the inverse of ence is that the amplitudes for the two types of steps are
the strip width with amplitudes that are linked to each otherddentical by symmetry,

as
N7p(+,2,0=N7n(+,2,0,=2Kg. (10)

K
N7s(+,a,¢)= —al+ 5 — ®?, The two interface free energies in E§) behave the same as
2 2K L : C . .
g in (ii). This again yields the valu&s=/4, inconsistent
- @ with Ks=7/8. The loop-gas line cannot move along line
an(—,a,O)zZ. segmentA-B.
(iv) Suppose the entire loop-gas line lies inside the DOF
The inverse oK, defined in Eq(2), represents the surface phase. The FSS central charge estimates decay-@ Both

roughness. The rough phase is described by the GaussifEP free energies are nonzero. The Ising-wall-type free en-
: gI0y is equal to zero. However, the convergence becomes

extremely slow when the Ising and roughening lines ap-

proach each other closely. The asymptotic forms will not be

reached, and the apparent scaling will be almost indistin-

guishable from(ii) or (iii). For A#0, the effective scaling

behavior will be almost identical to that in E¢P), but still

be distinguishable; the surface roughness cannot exceed the

valueK =m/8. ForA=0, the effective scaling behavior will

be identical to that fofiii ). This is a fundamental dilemma in

proves also that poirf in Fig. 1 must coincide with th&T studies of thig type of phenpme_na. The only distinction be-
tween scenario§ii) and(iv) is a judgment call on whether

transition into theF (n+ 3) phase] the two lines merge or not in the numerical analysis. In our
ii) Suppose the loop-gas line moves along the Ising sur- . .. )
(ii) Supp P-g 9 9 se, Eq(6) resolves the issue. It excludés) but allows

face inside the rough phase, in particular the phase bounda
with the RR phase dominated K2,0)-type steps. At Ising (
critical points the central charge is equalde-0.5 and the
Ising Bloch wall free energy scales as a power law wit
universal amplitude

exact and easy to derive in the Gaussian maddglmust be
smaller thanK;<7/8, since theKT roughening transition
takes place aKs=/8. This is a factor 4 smaller than the
conventional valueKg=/2, because the step excitations
create a height differencgh=+2 instead ofdh==1. The
loop-gas identity Eq(6), applied to Eq(7), yields the value
Kg=m/2, inconsistent witlK ;<#/8. The loop-gas line can-
not enter the deconstructed rough phasknis argument

In summary, the loop-gas symmetries exclude all the
habove scenarios except the last one. The only possibilities
are the following: either the roughening and Ising lines ap-
proach each other pathologically closely, or the roughening

N ;= /4. (8)  and reconstruction degrees of freedom interact strongly and

thus circumvent the above arguments. In any case, the Ising

The central charges and universal amplitudes add up, dme can never cross the loop-gas line, since that aspect does
c=1.0+0.5=1.5, when the Ising and roughening degrees ofnot require the weak-coupling hypothesis.
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FIG. 5. FSS estimates for the central charge along the loop g ofs-;::Tigr])g Of;ra(s(,)tr?g vaﬂlhth&tW'St in the surfacpalong the

line for strip widthsN=<10. The shaded area represents a conserva-

tive estimate for the uncertainty in the extrapolated val(tbs . .
dashed ling FSS corrections to scaling become large, and the FSS analy-

sis of the typec=c(N)+ A/N* becomes less reliable. The
VI. NUMERICAL RESULTS essential point is that is certainly larger thaw=1.5. This
contradicts all weak-coupling scenari@ee Sec. Y. Maybe
To distinguish between the scenarios outlined in Sec. V¢ varies Continuous|y a|ong the |00p_gas line, but it is more
we calculate the exact free energié6*,a,¢) for semi- |ikely that ¢ is a constant betweenst<3, and that the
infinite lattices of width 2N <10, for several boundary con- variation ofc in Fig. 5 reflects crossover scaling behavior
ditions as defined in Sec. IV. We run the transfer matrix inbetween that value ant=1.5 at the point where the rough_
the diagonal direction, where the state vector 38 gimen- ening and Ising lines merge.
sional. Such strip widths are in the usual range for transfer Figure 6 shows the FSS scaling behaviomMb#(+,0,0),
matrix calculations. They might seem small for readers morgind N z(—,0,0) along the loop-gas line. The first one forces
familiar with Monte Carlo simulations, but realize that our an |Sing wall into the reconstruction, and the second one an
values off(+,a,¢) are accurate to better than 12 decimal|sing wall and a twist in the surface. Both free energies van-
places. There is no statistical noise, unlike MC simulationsjsh in the DOF (2n) phase, as expected. At largg they
This allows a very detailed FSS analysis that incorporates thecale with amplitudes that converge towards the values
leading corrections to scaling. It pays to trade system size fog| 7(+,0,0,=m/4 and Nz(—,0,0=m/2 (the dashed lings
the ability to determine the leading corrections to scalingconsistent with the weak-coupling scenarios—(iv).
because at criticality FSS corrections decay only as power Figure 7 shows the FSS behavior dfy(+,2,00 and
laws. We know the exact location of the line where the re-N 7(+,2,0, along the loop-gas lineN#(+,2,0 induces a
construction and roughening transitions must merge or cros® 0)-type step in the surface ard7(+,2,0, a (2,m)-type
(if they do), the FP loop-gas ling,=zg+1. This makes our step. Both diverge in the DOF (&) phase as expectdthe
numerical analysis more accurate than earlier studies of theiep free energies are finiteAt large z,, both decay as
same type of phenomena. power laws. These data are inconsistent with scendijos
Figure 5 shows the FSS estimates for the central charggnd (jii ), in which N#7(+,2,0 and N#7(+,2,0, should be-
c(N) along the loop-gas linegga=zg+1. These values fol- come equal at larghl. The results are inconsistent with sce-

low from the free energy with periodic boundary conditions nario (ii) as well, sinceN#(+,2,00 and N#(+,2,0), should
f(+,0,0 and the conformal field theory scaling relation

™

f(+ ’O,O)N:f0+6N2C

11
0.8k

ISE]

as
0.6

Nn(+,2,0)

Nm

6 (N2—1)2
—

4N [f(+1010)N71_f(+1010)N+1]- (12)

04}
N[1(+2,0), - 1¢+0,0)]
Equation(11) is valid at criticality. Thec(N) approximants 02}
of Eq. (12) must converge to zero away from criticalifgx-
ponentially fast Indeed they do so inside the DOF (2 0.0
phase at smalt, . At criticality c¢(N) must converge to the

value characteristic for the universality class of the phase
transition. In Fig. 5, we present the raw{N) data together FIG. 7. Nn(+,2,0 [free energy of a(2,00 sted and
with our best FSS estimates for(the dashed lineand rather  N#(+,2,0,—N#(+,2,0, [free energy of &2,7) step minus that of
conservative error bar@he shaded areaAt large z,, the  a (0,7 wall] along the loop-gas line for strip widti$<10.

35 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Za
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FIG. 8. The step free energWN#%(+,2,0 along the line

. : FIG. 9. FSS estimates for the location of the critical point
zp+2zg=11 for strip widthsN<10. P

exp(—E;)=z5=2zg+1 along the loop-gas line frorta) the N7(—,
0,0) crossing points in Fig. 6, an) the N7(+,2,0=x/4 points in

differ by #/4 when the loop-gas line moves along the IsingFig 7

plane inside the rough phageee Eq.(9)]. To demonstrate
this, in Fig. 7 we plotN[7(+,2,0,— 7(+,0,0,] instead of
N#7(+,2,0, itself. The two sets of curves should fall on top s SHER ;
of each other and converge towards a continuously varying"c€ along the loop-gas line implies that all FSS estimates
roughness parameteik2 . Instead, they differ by a factor or th_e Ising transition cross t_he loop-gas line. The existence
close to 2. Most importantly, the data are inconsistent witHf Points along the loop-gas line wheey(+,2,0=7/4 (see
scenario(iv), in which the roughening and Ising lines only Fi9- 7) is equally significant. These points converge to the
approach each other asymptotically closely. We should find(T_roughening lines in Fig. 1(This is the conventional
an effective scaling behavior of the formNz(+,2,0 method to determmt_s su_ch r_oughenlng In)@]elr_ presence
=N[7(+,2,0,— 7(+,0,0,]=2K ¢, with an effective rough- along th_e Ioop-gqs_ line implies that all FS_S estimates for the
nessK=/8. Instead, not only do the two amplitudes differ "0Ughening transition cross the loop-gas line as vese also
by a factor 2, both sink well belowKs=m/4. The surface the discussion aboqt Fig).8The Ism_g an.d ro_ughemng.h.nes
roughness becomes too large by a factor of about 2. cross the loop-gas _Ilne from oppos[te d|lrect|ons. All firlite
Figure 8 shows an example of the FSS behavior ofestimates for the Ising and roughening lines cross each other.

N7(+,2,0 along the cutza+zg=11 through the loop-gas Both curves in Fig. 9 must converge t,—x if the

line. There exists no RR phase on either side of the |00p_gar§gghening and Isir_]g IIines only gpproach each other asymp-
line. In the reconstructed phask(+,2,0 must diverge, totically closely. This is very unlikely, although both curves

and in the rough and RR phases convergeKg 2At the KT are convex [tf;e _correctlons to  scaling behavg as
roughening transition, R must be equal to Rg=/4. The ~ Ea(N) =E/A/N*, with an exponenk<1]. A conservative
conventional method to determine the roughening tempergEStimate puts the critical point somewhere between
ture is to extrapolate the points wheey(+,2,0=x/4 as a 14<E.<1l6. . .
function ofN. In Fig. 8, these points lie at the reconstructed | eSe numerical results contradict all weak-coupling sce-

side of the loop-gas line. They converge toward the loop-ga arios, in particular the one where the rou_ghening and Ising
line at such a rate that power-law fits actually overshoot the"€S only approach each other pathologically closely, the

loop-gas line. This might lead to the conclusion that the®Y one allowed by the loop-gas symmetries of Sec. V. The

roughening line neither crosses nor merges with the loop-gd&0St damaging evidence is thaty(+,2,0 becomes too
line. On the other hand, along the loop-gas line itself, thesmall by a factor 2. It seems too far fetched that this ampli-

amplitude converges very well to a value much smaller thafude can rebound all the way back #d4 at very largeN.
714, This behavior is similar to what happens at a convenMoreover, t.he central charge' is significantly Iarger than the
tional KT-type roughening transition if one tries to estimate'V€ak-coupling value=1.5. Finally, the FSS estimates for
T, by extrapolating the points where the FSS amplitude idhe Ising and roughen_lng lines cross each other_for all finite
larger than the true critical valu®y7(+,2,0=n/4+a with . and lead to an estimatg,~1.5-0.1 for the point along
a>0. The FSS behavior in Fig. 9 strongly supports the abiN€ 100p-gas line where they merge.

sence of a RR phasbl.z(+,2,0 diverges everywhere on the

conventional method to locate such critical line€kheir pres-

reconstruction side of the loop-gas I_ine. Roughen!n_g seem to VIl. CONCLUSIONS
take place exactly at the loop-gas line, but surprisingly at a
surface roughness well above the universal KT value. In this paper, we study the phase diagram of the staggered

Figure 9 shows two types of estimates for the criticalsix-vertex model from the perspective of the competition be-
point where the roughening and Ising lines merge: theween surface roughening and reconstruction, and also in the
N#(—,0,0 crossing points from Fig. 6, and théz7(+,2,00  context of unresolved issues about the scaling properties of
=114 points from Fig. 7. The existence of crossing points inCFT with central charge>1. In Sec. Ill we review the
N#7(—,0,0 andN#(+,0,0, (see Fig. & is quite significant. weak-coupling hypothesis as encountered in previous studies
In the more global context of Fig. 1, these crossing pointf this type of interplay. In particular we show that a recon-
converge to the Ising-type reconstruction lin€Bhis is the  structed roughfRR) phase must be present in typicdR X 2)
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CsCl100)-type surfaces. The staggered six-vertex model intheory withc>1. More likely, it represents a conventional
cludes a fully packed loop-gas liri€ec. IV). Its special sym- CFT, but one in which more degrees of freedom become
metries explain the absence of the RR phase in this particularitical than in Eq.(3) and Fig. 3. The obvious candidate is
model. In Sec. V, we prove that the Ising-type reconstructiorthe Ising degree of freedom of tfg(2m+1,6) phase lo-

line cannot cross the loop-gas line. Moreover, we demoncated on the opposite side of tkg=Eg line in Fig. 1. The
strate that within the context of the weak-coupling hypoth-two reconstructed phases do not seem to meet in Fig. 1, but
esis the roughening line cannot cross the loop-gas line eithefey actually do so via the “backdoor”. They meet at point
This would explain the results by Mazzeo, Carlon, and var¥=1 in EQ. (5, sincezy,=2zg+1 andzg=2z,+1 are each
Beijeren, and put them in agreement with the generic phasgtner's analytic continuations. A four-state clock model
diagram Fig. 3. However, our numerical results contradict alfUPIed to a solid-on-solid model describes both types of

weak-coupling scenarios. The Ising and roughening |inei:1ecor?1,st(;uctions ﬁ!mhult?nﬁouslé. Th’e:iél Is?ng §pins in
merge along the loop-gas line. The central charge is large, 9. (3) denote which of the twé-type sublattices is on top

least equal tc=2 (see Fig. 5, and the surface roughness in the R(2m, #) phase. Their generalizations are four-state

; . i - L
increases to a value about twice as large as the universal ock var!ablgsﬂ—o, =T thf"‘t point in the dlrect|on Of.
value (see Fig. 7. the polarization of the arrows in vertex states 1-4 in Fig.

Equations(4) and (5) represent FP loop gases on a Square4(a). They denote which of the four sublattices is on top: one

lattice. The FP loop-gas model on a honeycairt) lattice, ~ ©f the two A-type sublattices§=0,, or one of the two

i —+1
and a four-coloring problem on the square lattice, are relate “type SUblatt'CFéeF},i 277.'hSUCh almﬂdel hazs ‘:T_wplf room
to this. Those models have large central charges as welfo" conventiona s with central charge=2. The loop-

respectivelyc=2 and 3[24—26. Unfortunately they seem gas symmetries will enforce a nongeneric path through its

more closely related to Eq4) than Eq.(5). The partition Phase diagram. Poin¢=1 in Eq. (5), where the two recon-
function of the FP loop gas on a HC lattice is similar to Eq.strucnons meet, is almost certainly a critical point with cen-

(4), with three types of “bridge energies” instead of two, tra.l. charg(_ec=2. Figure 3 applies \_/vhen=1 is an isc_)lateq
z,=a=A, B, andC (the plaquettes of the HC lattice form critical point. In.that case, the Ising and roughening lines
three sublattices instead of twdPoint P in our phase dia- C2nnot meet untik=1 (our exact results of Sec.)Vinstead,
gram is a critical point with central charge=1. It is the our numerical analysis shows that1 is not an isolated

meeting point of two DOF phases and also the point wherd&0int. The next step will be an analytic calculation, to deter-

the E,=Ej surface roughen&ee Fig. 1 The corresponding mine the scaling properties at poiy1. The critical dimen-
point in the FP loop gas on the HC latticg,=zz=7c, is a sion of the crossover operator in the loop-gas direction must

critical point with central charge=2 [24—26. It is the be irrelevant or marginal for the loop-gas to remain critical

meeting point of three DOF phases, and of three critical line&Ntil POINt S in Fig. 1. This line segment is probably some

with central charge =1 (the phase boundaries between pairsSort (_)f Baxter-line coupled to rough_ening, s_ince the unive_rsal
of DOF phases[27]. The scaling properties alonz,=zg amplitudes of both step free energies in Fig. 7 vary continu-

=1 in Fig. 1 appear to be more complex than this. This jgously.

not surprising, since Eq5) includes negative Boltzmann
weights.

We close with some speculations about the origin of It is a pleasure to thank Enrico Carlon, Giorgio Mazzeo,
strong-coupling scaling along the loop-gas limgs=zg=1. and Henk van Beijeren for many discussions. This research
It might represent an interesting type of conformal fieldwas supported by NSF Grant No. DMR-9205125.
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